
FILE COPY

~CECOM

CENTER FOR SOFTWARE ENGINEERING
NADVANCED SOFTWARE TECHNOLOGY
N
I

Subject: Final Report - Real-Time Ada Performance
Benchmarks: Execution Results

CIN: C02 092LY 0004 00

23 July 1990 0TIC

P LECTE
OCT 111 3

MS~ fai dc vuTcu
A~~~. ubkWA

, t inbuftmn U ntimbiuiuINIl

REPORT DOCUMENTATION PAGE
bwft~krf Is 1~gi 14u b**V4l .b i~' 0 r &W*0~ 21 hft Dww IMbgi'm1. Sub& ft, Wf Aa9NW* ed pno."I&

0m =r115kwmD

1. AGENCY USE ONLY (Lanvw BAWi) 2. RE DATE 3. REPORT TYPE AND DATES COVERED

. 23 July 1990
Final Report

4. TITLE AND SUTLE 5. FUNDING NUMBERS

Real-Time Ada Performance Benchmarks: Execution Results F30602-86-C-0111

6. AUTHOR(S)

Arvind Goel

7. REWOWI&-NG ORGANIZATION NAME(S) ANDADORESS(ES) a. PERFORMING ORGANIZATIO
REPORT NUMBER

Unixpros Inc.

16 Birch Lane

Colts Neck, NJ 07722

9. SPONSORINGFMONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORNGWMONITORING AGENCY

U.S. Army HQ CECOM REPORT NUMBER

Center for Software Engineering

Fort Monmouth, NJ 07703-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONAVALABILITY STATEMENT 12b. DISTRIBUTION CODE

STATEMENT A UNLIMITED

13. AB STRACT (MUMi,~i 200 words)

) A set of real-time performance benchmarks were previously developed by CECOM to
measure the performance of individual Ada features, to de:ermine Ada runtime system
implementation dependenri:es, and n cle:eririne the performance of paradigms found in real-time
systems. This task transported the benchmarks to other environments and listed the results after
running them. Using the DDC-I Ada cross compiler system hosted on a MicroVax I1 and targeted
to t.e Intel 80X86 family of microprocessors, results were obtained. Also the results of running
the benchmarks on a HP 9000/350 computer, using two versions of the self-hosted HP Ada
compiler (HP3.25 and HP4.35) running under HP-UX, are presented. /) __

14. SUBJECT TERMS IS. N~EUN OF PAGES

Ada, benchmarks, real-time
16. PRICE COOE

S.c=CUITY-CLASSIF ICATION 18, ',F GURrrY CLASSI;:-CATKON 19. SECURITY CLASSII:ICAT K N 20. LIMITfATION OF ABSTRACTOF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7W0-01-280-5500 Stanoard Form 296, (Fiev. 2-89)
NSN~~~Pe I500-2050 ,~ by ANSI Sid M 18

GENERAL INSTRUCTION~ FQR MMPLETING SF-22
Tt,;- Report Documentation P-age (RDP) is used in annou -icing and catalogin: 'e:Orts. It is in*Dortant
tria: this information be consistent with the rest of the reDort, particularly tMc cove, and titlf- page.
In::-rucitons for fillinz in each block of the form follow. it is important to stay within th~e lines to meet
optical scanning requirements.______________________

Block 1. Apeny U-se Only (Lpavp blank). Block 12a. DiqtributionIAvailahility !'ateLrnfLt
Denotes public availability or limitations. Cite

Block 2. Reor ate, Full publication date any availability to the public. Enl!' addior-i
including day, month, and year. if availabE. (e.g mttoso seilmrigsr.lcp~l

1 Ja 88. Mut cte a lest te ya'.(e.g. NOFORN, REL, iTAR).

Block 3. Typc of Rport sndi Dalte rd.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, '.-iistrioution
applicablc. enter inclusive report dates (e.g. 10 S:-Atements on Technical
Jun 87 -3D Jun 88). Doocumen* .'

Block 4. Mte and SibitLe. A title is taken, from DOE - See authorities.
the part of the report t~ia provides the mcnt NASA - See Handbook NHE.' 2200.2.
meaningfu! and compicte inmoinat',on. Wrien a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for tnL specific volume. On Block 12b. Distrihi-tion Conep
classified documents ent,2r the title
classification in parentheses. DOD - DOD - Leave blank.

Bloc 5.FuninnNumersTo nclde ontact DOE - DOE - Enter DOE distribution c&*,eoories
Bloc 5.FuningNiibercTo nclde ontactfrom the Standard Distribution fo

and grant numbers; may include program Ucasfe cetfcadTcnc
element number(s), project number(s), task UnclasiidSinii.n ehi~
number(s), arid work unit number(s). Use the NASA - ReoS. evebak
following labels: N AI -S- Leave blank.

C - Contract PR - Proiect
G - G-ant TA - Thsk Block 13. AbstractL Include a brief (Maximumn
PE - Proorarn WU- Vvork Unit 200 words) tactua: sumrmary of the most

Element Accession No. sianificant information contained in the report,.

Block 6. Author(5c. Name(s) of person(s)
resoonsiblE for wri*.--i the rep'o7:, performing Bioci:- 14. Su)-: Kceywcrds c.- phrases
the research, or credited with the content of the identifying mai;or subjects in zie report.
report. If editor or compiler, this should follow
the name(s). Block 15. Numbpr of Pa ,es En*ter ti--E tota:

Block 7. Perormi-2 0r;Igniztion Name(s) anc number of pages.
Addrnq;s) Self -explanatory. Block 16. BPrico Code. Enter appropriate price

Block 8. PorformicOrganization Repor code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classificp-.ons.
performing the report. Self -explan'atory. Enter U.S. Security

Biock 9. Sponsoring'lMonitorin; Apency Classification in accordance with U.S. Security
Namot(s,' 2an: Addre,(ea) Self -explanatory. Regulations (i.e., UNCLA.SSIFIED). If form

contains classified information, stamp
Block 10. Sponnorin /Monitorin'- Agenny classification on the top and bottom of the page.
Report Number. (it known)

Blok 1.Su~lmetay otc.EnerBlock 20. Urnilaton~~~zra~ This block
Blor to1 nS ppe e r soteh Ente -lust be completed to assign a limitation to the

Prepared in cooperation witnm...: rans. of ... ; To aostract. Entei either UL (unlimited) or SAR
be published in.... When a report is revised, (same as rep.-r). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumned to be unlimited.

Sanca-: Fcrrr 2PE Ba 'e.?

Real-Time Ada Performance Benchmarks:

Execution Results

Prepared For:

U.S. Army CECOM
Advanced Software Technology
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

Prepared By:

Unixpros Inc.
16 Birch Lane

Colts Neck, NJ 07722

July 10, 1990.

Real-time Ada Performance Benchmarks:

Execution Results

Executive Summary

This report documents the results from running the Real-time Ada
Performance Benchmarks on the Intel 80386 computer using the DDC-I
Ada compiler system hosted on a MicroVax H and targeted to Intel 8086
family of microprocessors. Results of running the benchmarks on a HP
9000/350 computer using the self-hosted HP Ada compiler running
under HP-UX are also listed in the Appendix. A brief discussion of the
benchmarks and test environment is followed by listing of the results
obtained.

I 400esslon For

NTIS GRA&I
DTIC TAB C]
Unannounced []
Just 1f cation

By
Distributiomf
Avolablft ity Codes

I ' ___I I I I

CONTENTS

1. Introduction . 2

2. Real-time Benchmarks 3
2.1 Measure Performance Of Individual Features 3
2.2 Determining Runtime System Implementation 3
2.3 Real-time Paradigms 4

3. Organization of the Real-time Benchmarks 5
3.1 Micro . 5
3.2 rts . 6

3.3 paradigms . 7

4. Benchmark Execution on DDC-I Ada Compiler 8
4.1 Testbed Hardware and Software 8
4.2 Microscopic Benchmarks 8

4.2.1 Tasking 8

4.2.1.1 Task Activation/Termination 8
4.2.1.2 Task Synchronization 10

4.2.2 Memory Management 16
4.2.3 Exceptions 23
4.2.4 Chapter 13 Benchmarks 26
4.2.5 Clock Function and TYPE Duration 28
4.2.6 Numeric Computation 29
4.2.7 Subprogram Overhead 30
4.2.8 Pragmas 38
4.2.9 Input/Output 40

4.3 Runtime Implementation Benchmarks 40
4.3.1 Tasking Implementation Dependencies 40
4.3.2 Task Synchronization 41
4.3.3 Scheduling and Delay Statement 43
4.3.4 Memory Management 43
4.3.5 Asynchronous /O 44

4.4 Real-Time Paradigms 44

5. Conclusions 47
Appendix A: Execution Results For the HP Ada Compiler 50

-1-

LIST OF TABLES

TABLE 1. Task/Activation Termination Benchmarks 9

TABLE 2. Simple Rendezvous Benchmarks (No Parameters
Passed) 11

TABLE 3. Complex Rendezvous Benchmarks 13

TABLE 4. More Rendezvous Benchmarks 15

TABLE 5. Dynamic Allocation:Storage Allocated Is Fixed 17

TABLE 6. Dynamic Allocation:Storage Allocated Is Variable 18

TABLE 7. Dynamic Allocation with NEW Allocator 19

TABLE 8. NEW Allocator:No Storage Deallocation 21

TABLE 9. NEW Allocator:Active Tasks = 5 22

TABLE 10. NEW Allocator:Active Tasks = 10 23

TABLE 11. Exception Raised and Handled in Block 24

TABLE 12. Exception Raised and Handled One Level Above 25

TABLE 13. More Exception Handling Benchmarks 25

TABLE 14. TaskingError Exception Benchmarks 26

TABLE 15. Chapter 13 Benchmarks 27

TABLE 16. CLOCK Function Tests 28

TABLE 17. TIME and DURATION Mathematics 29

TABLE 18. Numeric Computation Benchmarks 30

TABLE 19. Subprogram Overhead (Intra-Package) 31

TABLE 20. Subprogram Overhead (Intra-Package with Pragma
ININE) 33

TABLE 21. Subprogram Overhead (Inter-Package) 35

- ii -

TABLE 22. Subprogram Overhead (Intra-Package With generic
Instantiation) 37

TABLE 23. Subprogram Overhead (Inter-Package With Generic
Instantiation) 38

TABLE 24. Pragma Benchmarks 39

TABLE 25. Input/Output Benchmarks 40

TABLE 26. Tasking Implementation tenchmarks 41

TABLE 27. Rendezvous Implementation Benchmarks 42

TABLE 28. Scheduling and Delay Statement Dependencies 43

TABLE 29. Memory management Dependencies 44

TABLE 30 Real-time Paradigms. 45

TABLE 31. HP Results: Task/Activation Termination Benchmarks 51

TABLE 32. HP Results: Simple Rendezvous Benchmarks (No Parameters
Passed) 53

TABLE 33. HP Results: Complex Rendezvous Benchmarks 55

TABLE 34. HP Results: More Rendezvous Benchmarks 57

TABLE 35. HP Results: Memory Allocation: Storage Allocated is
Fixed 58

TABLE 36. HP Results: Dynamic Memory Allocation: Storage Allocated is
Variable 59

TABLE 37. HP Results: Dynamic Memory Allocation with the NEW
Allocator 60

TABLE 38. HIP Results: New Allocator: No Storage Deallocation 61

TABLE 39. HP Results: NEW Allocator'Active Tasks = 5 62

TABLE 40. HP Results: NEW Allocator:Active Tasks = 10 63

TABLE 41. HP Results: Exception Raised/Handled in Block -
3.25 64

TABLE 42. HP Results: Exception Raised/Handled in Block -
HP4.35 65

-oo111 -

TABLE 43. HP Results: Exception Raised/Handled One Level Above -
I-IP3.25 66

TABLE 44. HP Results: Exception Raised/Handled One Level Above -
HP4.35 67

TABLE 45. HP Results: TaskingError Exception Benchmarks 68

TABLE 46. HP Results: Chapter 13 Benchmarks 69

TABLE 47. HP Results: CLOCK Function Tests 70

TABLE 48. HP Results: TIME and DURATION Mathematics 71

TABLE 49. HP Results: Numeric Computation Benchmarks 72

TABLE 50. HP Results: Subprogram Overhead (Intra-Package) 73

TABLE 51. HP Results: Subprogram Overhead (Intra-Package with Pragma
INLINE) 74

TABLE 52. HP Results: Subprogram Overhead (Inter-Package) 75

TABLE 53. HP Results: Subprogram Overhead (Intra-Package with Generic
Instantiations) 76

TABLE 54. HP Results: Subprogram Overhead (Inter-Package with Generic
Instantiations) 77

TABLE 55. HP Results: Pragma Benchmarks 78

TABLE 56. HP Results: Input/Output Benchmarks 79

TABLE 57. HP Results: Tasking Implementation Benchmarks 80

TABLE 58. HIP Results: Rendezvous Implementation Benchmarks 81

TABLE 59. HP Results: Scheduling and Delay Statement
Dependencies 82

TABLE 60. HP Results: Memory Management Dependencies 83

TABLE 61. HP Results: Real-time Paradigms. 84

- iv-

-2-

1. Introduction

The Center for Software Engineering, Ft. Monmouth, NJ has been involved with
developing benchmarks for Ada language and runtime features considered important
for programming real-time embedded applications. As part of this effort, real-time
performance benchmarks were developed that measure the performance of individual
Ada features, determine Ada runtime system implementation dependencies, and
determine the performance of paradigms found in real-time systems [1]. The report
titled "Real-time Performance Benchmarks for Ada" should be consulted for an in-
depth discussion of the benchmarks as well as the strategy used in designing the real-
time benchmarks [1]. Report [1] also contains the results obtained by running the
Real-time benchmarks on a Verdix Ada compiler system hosted on SUN 3/60 and
targeted to a Motorola 68020 processor. In this report, the real-time benchmarks
have been run on a Intel 80386 computer using the DDC-I Ada compiler system
targeted to Intel 8086 microprocessor.

Section 2 briefly describes the Real-time benchmarks.

Section 3 describes the organization of the Real-time Benchmarks.

Section 4 lists the execution results obtained by running the benchmarks on a Intel
80386 computer.

Section 5 concludes with some thoughts about the r',sults obtained during this effort.

Results of running the benchmarks on a HP 9000/350 computer using two versions of
the self-hosted HP Ada compiler (namely HP3.25 and HP4.35) running under HP-UX
are presented in Appendix A.

-3-

2. Real-time Benchmarks

The Real-time benchmarks were developed at the Advanced Software Technology,

Center for Software Engineering, US Army CECOM. A detailed discussion of the
Real-time benchmarks is presented in reference [1]. Also, the report titled
"Documentation For Real-time Benchmarks For Ada" describes the organization,
layout and file naming conventions of the Real-time benchmarks [2].

The Real-time benchmarks use three distinct approaches to determine performance
of Ada compiler systems. These approaches are discussed briefly in the following
sections.

2.1 Measure Performance Of Individual Features

This approach measures the execution speed of individual features of the language
and runtime system by isolating the feature to be measured to the finest extent
possible. Such benchmarks are useful in understanding the efficiency of a specific
feature of an Ada implementation. For example, a benchmark that measures the time
for a simple rendezvous can be run on two Ada compiler systems. Based on the
results, an application can choose one compiler system over the other. The advantage
of such an approach is performance evaluation without bias towards any application.
These tests are useful for bottleneck analysis in which a score for a given test must

exceed a stated threshold if an Ada implementation is to be considered suitable for an
application. Benchmarks have been designed for Ada features such as tasking,
memory management, exception handling, Chapter 13, interrupt Handling, CLOCK
overhead and Type Duration, numeric computations, subprogram call overhead,
Pragmas, and Input/Output.

2.2 Determining Runtime System Implementation

These benchmarks are concerned primarily with determining the implementation
characteristics of an Ada Runtime System. The scheduling algorithm, storage
allocation/deallocation algorithm, priority of rendezvous between two tasks without
explicit priorities are some of the many implementation dependent characteristics that
need to be known to determine if a compiler system is suitable for a particular real-
time embedded application. Some implementation dependencies cannot be
benchmarked and that information has to be obtained from the compiler vendor as

-4-

well as the documentation supplied by the vendor. A major effort in such benchmarks
involves interpreting the results obtained by running the benchmarks and drawing the
correct conclusions. A detailed description has been provided to help interpret the
results. The ARTEWG document "Catalog of Ada Runtime Implementation
Dependencies" [4] lists those Ada features that are implementation dependent. This
document has been consulted extensively in determining which implementation
dependencies need to be benchmarked for real-time embedded systems. Benchmarks
have been designed for Ada features such as: tasking, scheduling and delay statement,
memory management, exceptions, interrupt handling, and asynchronous I/O.

2.3 Real-time Paradigms

This approach involves programming algorithms found in embedded systems. For
example, a situation in real-time systems may be a producer that monitors a sensor
and produces -utput asynchronously and sends it to a consumer. The producer task
cannot wait for a rendezvous with the consumer (who might be doing something else)
as the producer task might miss a sensor reading. To program this paradigm in Ada
requires three tasks: a producer task, a buffer task that receives inptt from the
producer task and sends the input to the third task:consumer task.

Macro constructs are defined as a set of Ada statements that perform a well defined
process e.g. semaphores, mailbox construct etc. For real-time embedded systems,
real-time paradigms can be identified and programmed in Ada using macro
constructs. These benchmarks can be run on Ada compiler implementations and
statistics gathered on their performance.

-5-

3. Organization of the Real-time Benchmarks

This section describes the organization of the Real-time benchmarks. For more details
refer to the report "Documentation For Real-time Performance Benchmarks for
Ada" [2].

At the top level of the directory structure is the directory bench. There are 3
directories under bench:

" micro: The directory micro contains the benchmarks that measure the
performance of Ada features that are important for real-time embedded
applications.

* rts: The directory rts contains benchmarks that measure runtime implementation
dependencies.

" paradigms: The directory paradigms contains benchmarks that implement macro
constructs and real-time programming paradigms.

3.1 Micro

The directory micro contains the directories that contain the micro benchmarks.

* Iv 1v contains loop verification benchmarks. This benchmark is executed to verify
that textually similar loops should take equal amount of time to execute.

" t: t contains tasking activation/termination benchmarks. These benchmarks
measure tasking activation/termination timings under various conditions.

* r: r contains tasking synchronization benchmarks. These benchmarks determine
the time required to perform rendezvous under various loads and conditions.

" ex: ex contains exception handling related benchmarks. Exception handling and
propagation timings are measured by these benchmarks.

* chap3: chapl3 contains Chapter 13 related benchmarks. These benchmarks may
not compile for some Ada compiler systems.

* dd: dd contains benchmarks that measure dynamic allocation time in declarative
regions.

" dn: dn contains dynamic allocation with new operator benchmarks (file
dncompile contains the list of benchmarks that need to be compiled for these

-6-

cases). The directory dn also contains benchmarks that determine allocation time
without memory being freed by UNCHECKEDDEALLOCATION (file

dn-compilel contains the list of files that need to be compiled for these
benchmarks). The directory new under dn contains tests that determine the affect
of additional tasks on time for dynamic allocation (file dn-compile contains files
for 5 tasks and dn compilel contains for 10 tasks).

" co: co contains Clock function calling overhead and resolution benchmarks.

* io: io contains input/output benchmarks.

* tin: tm contains mathematical benchmarks.

" d: d contains regular case do nothing subprogram overhead benchmarks.

" i: i contains inline subprogram overhead benchmarks.

* p: g contains cross package subprogram overhead benchmarks.

" g: g contains generic subprogram overhead benchmarks.

* c: c contains generic cross package subprogram overhead benchmarks.

" dt: dt contains scheduling and delay statement benchmarks.

3.2 rts

The directory rts under bench contains the benchmarks that determine runtime
implementation dependencies. The following directories exist under rts:

* t: t contains benchmarks that determine tasking related runtime implementation
dependencies.

* r: r contains benchmarks that determine rendezvous related runtime

implementation dependencies.

" mm: mm contains benchmarks that determine memory management related
runtime implementation dependencies.

* ex: ex contains benchmarks that determine exception related runtime
implementation dependencies.

-7-

3.3 paradigms

The directory paradigms contains the benchmarks that determine the performance of
macro constructs and real-time paradigms.

-8-

4. Benchmark Execution on DDC-I Ada Compiler

This section presents the results of running the Real-time benchmarks on the DDC-I
Ada Compiler System targeted to the Intel 8086 computer. The benchmarks have
been run on a Intel 80386 computer (as Intel 8086 code can also run on the Intel
80386).

4.1 Testbed Hardv,,re and Software

The hardware used was MicroVAX I running MicroVMS 4.2, linked to a Tandy
Corporation Intel 80386 computer.

Host: MicroVAX II, running MicroVMS 4.2.

Compiler: DDC-I Ada Development System targeted to Intel 8086
target

Target: Intel 80386 computer with 1 megabyte of RAM.

The benchmarks were compiled on the MicroVAX II and then downloaded to the
Intel 80386 computer via Kermit. The benchmarks were compiled without the
optimize option and the timings listed are for un-optimized runs.

4.2 Microscopic Benchmarks

4.2.1 Tasking

4.2.1.1 Task Activation/Termination

Table 1 lists the benchmarks that have been developed for Task
activation/termination.

-9-

TABLE 1. Task/Activation Termination Benchmarks

Execution time in miliseconds

File Name Benchmark Description Time

tOO001.a Task type in main, object in block statement 0.305

tOO001_1 Task object is declared directly in block statement 0366.8

t000012.a Task type and object defined in package procedure 0.366

t00001_3.a Task type in package, object in package procedure 0.366

t000014.a Task type and object are declared in another task 0.356

t00002.a Task type and array elaborated in a procedure 1.5

t00002_l.a Task type in package, array in procedure 1.53

t00002_2.a Task type in main, array in package procedure 1.53

t00003.a Task object is declared as part of record 0.366

t00004.a Task access type in main, task created via new 0.370

t0O004_l.a Task access type in block, task created via new 0.370

t000042.a Task access type in main, array created via new 0.370

t00005.a Task object in block statement, idle tasks = 1 0.340

t00005_l.a Task object in block statement, idle tasks=5 0.340

t00005 2.a Task object in block statement, idle tasks = 10 0340

t00005_3.a Task object in block statement, idle tasks=20 0.341

t00006.a Task created via new allocator, idle tasks = 1 0.370

t00006 1.a Task created via new allocator, idle tasks=5 0.370

t000062.a Task created via new allocator, idle tasks= 10 0.370

t000063.a Task created via new allocator, idle tasks = 20 0.371

- 10-

Some observations about the results in Table 1 are:

1. For the DDC-I compiler, the average time for task activation/termination for
tasks declared in arrays is around 1.5 milliseconds, which is significantly higher
than the task activation/termination time (0.35 milliseconds) for tasks declared
in the main program. This is due to the fact that as each task in the array is
elaborated, the task space for that task is left intact till all tasks in the array have
been elaborated. Storage allocation times for tasks may deteriorate as more and
more space has been allocated.

2. The DDC-I compiler takes more time (0.37 milliseconds) for task
activation/termination timing via the new allocator as compared to task objects
declared in the main program (0.35 milliseconds).

3. There is no effect on task activation/termination timings when the number of
idle tasks increases.

4.2.1.2 Task Synchronization

Table 2 lists the benchmarks for simple rendezvous.

- 11 -

TABLE 2. Simple Rendezvous Benchmarks (No Parameters Passed)

Execution time in microseconds

File Name Benchmark Description Time

r0001.a Procedure calls entry of task declared in main 67

r00001_l.a Procedure calls entry in task created via new 67

rOO001.2.a Main calls entry in task decl in package 104

rO0002.a Main calls two entries in two tasks decl in package 103

r00002_l.a Main calls 10 entries in ten tasks decl in package 102

r00002..2.a Main calls 10 entries in one task decl in package 102

r00003.a Main calls 1st entry in select, 2 entries decl 157

r00003_l.a Main calls last entry in select, 2 entries dedl 154

r00003.2.a Main calls 1st entry in select, 10 entries decl 241

r00003.3.a Main calls last entry in select, 10 entries decl 210

rOO003_4.a Main calls 6th entry in select, 10 entries decl 225

r00003_5.a Main calls 1st entry in select, 20 entries decl 342

r00003_6.a Main calls last entry in select, 20 entries decl 283

r00003_7.a Main calls 11th entry in select, 20 entries decl 310

r00004.a Main calls 1st entry out of 2, 1st guard true next false 150

r00004 1.a Main calls last entry out of 2, 1st guard false next true 152

r00004 2.a Main calls 1st entry out of 20, 1st guard true rest false 187

r00004_3.a Main calls last entry out of 20, last guard true rest false 189

r00004_4.a Main calls 11th entry out of 20, 11th guard true rest false 187

r00004.5.a Main calls 11th entry out of 20, all guards true 339

- 12-

Some observations from the results in Table 2 are:

1. Task rendezvous time for single entry calls in select is 67 microseconds. For
tasks that are declared in packages and entry call made from the main program,
the rendezvous time increases to 104 microseconds.

2. For the DDC-I compiler, the timing for rendezvous is nearly the same for the
scenarios in which the main program calls ten entries in 10 different tasks or the
main program calls 10 entries in one task.

3. The measurements indicate that the more the number of entries in a select
statement, the more time it takes to rendezvous with any entry in the select
statement.

4. Also, for the DDC-I compiler the later the position of the accept in the select
statement, the less time it takes for the rendezvous to complete (without the
guard statement).

5. The DDC-I compiler evaluates the guards before the entry call is made and
hence guards have minimal effect on rendezvous time.

Table 3 lists complex rendezvous benchmarks.

- 13-

TABLE 3. Complex Rendezvous Benchmarks

Execution time in microseconds

File Direction Type and Size Time

Name Passed Number Passed (us)

r00005_i.a In Integer Array 1 107

r00005_o.a Out Integer Array 1 106

r00005_io.a In Out Integer Array 1 109

r00005_1_i.a In Integer Array 1000 108

r00005_1_o.a Out Integer Array 1000 110

r00005 1 io.a In Out Integer Array 1000 110

r00005_2_i.a In Integer Array 10000 107

r00005_2_o.a Out Integer Array 10000 109

rOO005_2_io.a In Out Integer Array 10000 110

r00005.3_i.a In lInteger 107

r00005_3_o.a Out 1 Integer 110

r00005 3 io.a In Out 1 Integer 108

r00005 4.i.a In 10 Integers 168

r00005_4.o.a Out 10 Integers 189

r00005_4.io.a In Out 10 Integers 195

r00005. 5i.a In 100 Integers 488

rO0005.5_o.a Out 100 Integers 627

rOO005.5 io.a In Out 100 Integers 663

- 14-

Some observations about the results in Table 3 are:

1. The measurements indicate that integer arrays are passed by reference rather
than by copy as the rendezvous time for integer arrays of 1 and 1000 are
essentially the same.

2. As far as integer parameters are concerned, the DDC-I compiler uses pass by
copy (due to the fact that the time for rendezvous increases with the increase in
the number of integer parameters).

3. Also, the time for mode out and in out parameters is more than the time
required for parameters of mode in. This is logical since the compiler has to
copy back the change in value that can occur with a variable of type out or in
out.

Table 4 lists more rendezvous benchmarks.

nmnm mmm lnmmn l Ma

- 15-

TABLE 4. More Rendezvous Benchmarks

Execution time in microseconds

File Name Benchmark Description Time (us)

r00006 1 1.a 1st entry out of 2 called with 10 integers 254

r00006_12.a Ist entry out of 2 called with 100 integers 737

r0000621.a Last entry out of 2 called with 10 integers 247

r00006_2_2.a Last entry out of 2 called with 100 integers 719

r00006_3_l.a 1st entry out of 10 called with 10 integers 338

r00006_3_2.a 1st entry out of 10 called with 100 integers 806

r00006_4_l.a Last entry out of 10 called with 10 integers 307

r00006_4_2.a Last entry out of 10 called with 100 integers 785

r00006_5_l.a 1st entry out of 20 called with 10 integers 437

rOO006_5_2.a 1st entry out of 20 called with 100 integers 906

r00006-6_.a Last entry out of 20 called with 10 integers 378

r00006_6_2.a Last entry out of 20 called with 100 integers 864

r00007.a Overhead due to terminate alternative 11

r00008.a Overhead of conditional entry callrendezvous complete 5

rOO008_l.a Overhead of conditional entry callrendezvous incomplete 25

rOO009.a Overhead of timed entry callrendezvous complete 5

rO009_l.a Overhead of timed entry callrendezvous incomplete 26

rOOOll.a Main calls an entry with 100 IntegersIdle tasks = 1 665

rOO011 l.a Main calls entry with 100 Integers,ldle tasks = 5 665

rOO011_2.a Main calls entry with 100 IntegersIdle tasks = 10 665

rOO0113.a Main calls entry with 100 ntegers,Idle tasks = 20 665

- 16-

Some observations about the results in Table 4 are:

1. For the DDC-I compiler, the time for rendezvous call to the last entry with 100
integer parameters (mode in out) increases from 719 microseconds (2 entries)
to 785 microseconds (10 entries) to 864 microseconds (20 entries). Thus, it can
be deduced that time for rendezvous with integer parameters increases linearly
as the number of accept statements in the select statement increases.

2. For the DDC-I compiler time for rendezvous remains the same for up to 20 idle
tasks.

4.2.2 Memory Management

Table 5 lists Dynamic allocation benchmarks when the storage allocated is fixed.

- 17-

TABLE 5. Dynamic Allocation:Storage Allocated Is Fixed

Execution time in microseconds

File Type Number Size of Time
Name Declared Declared Object (us)

dd inl.a Integer 1 0.3

dd inlO.a Integer 10 03

ddinl.a Integer 100 03

dd-stl.a String 1 1 03

dd stlO.a String 1 10 0.3

ddstlOO.a String 1 100 03

dd enl.a Enumeration 1 0.4

dd enl0.a Enumeration 10 0.4

dd enl00.a Enumeration 100 0.4

dd-arl.a Array of Integer 1 1 03

ddarl0.a Array of Integer 1 10 0.3

ddarl00.a Array of Integer 1 100 0.3

ddarlk.a Array of Integer 1 1000 0.4

ddarl0k.a Array of Integer 1 10000 0.4

dd.arlOOk.a Array of Integer 1 100000 0.4

ddrcl.a Record of Integer 1 1 0.3

dd.rcl0.a Record of Integer 1 10 0.3

dd-rc100.a Record of Integer 1 100 0.3

_______ n _________U _n__

- 18-

Some observations about the results in Table 5 are:

1. For the DDC-I Compiler, time required to allocate integer variables,
enumeration variables, strings and arrays of integers upon entering a
subprngram was sml (< 1 microsecond).

Table 6 lists dynamic allocation benchmarks when the storage allocated is variable.

TABLE 6. Dynamic Allocation:Storage Allocated Is Variable

Execution time in microseconds

File Type Number Size of Time

Name Declared Declared Object (us)

ddldl.a 1-D Dynamically Bounded Array 1 1 12

ddidl0.a 1-D Dynamically Bounded Array 1 10 12

dd_2dl.a 2-D Dynamically Bounded Array 1 1 26

dd_2dl0.a 2-D Dynamically Bounded Array 1 100 26

dd_3dl.a 3-D Dynamically Bounded Array 1 1 45

dd_3dl0.a 3-D Dynamically Bounded Array 1 1000 45

Some observations about the results in Table 6 are:

1. The time required for dynamically bounded arrays increases as the dimensions
of the dynamically bounded array increase but not when tule size of the object
increases.

- 19-

Table 7 lists dynamic allocation benchmarks with new allocator.

TABLE 7. Dynamic Allocation with NEW Allocator

Execution time in microseconds

Fle Type Size of Time

Name Declared Object (us)

dninl.a Integer 1 102

dn enl.a Enumeration 1 101

dnstl.a String 1 101

dnistlO.a String 10 101

dnstl00.a String 100 101

dnarl.a Integer Array 1 101

dnarl0.a Integer Array 10 101

dnarl00.a Integer Array 100 101

dnarlk.a Integer Array 1000 190

dnrcl.a Record of Integer 1 101

dnrcl0.a Record of Integer 10 101

dnrc2O.a Record of Integer 20 101

dn-rc50.a Record of Integer 50 101

dn-rcl00.a Record of Integer 100 101

dnldl.a 1-D Dynamically Bounded Array 1 203

dn ldl0.a 1-D Dynamically Bounded Array 10 203

dn 2dl.a 2-D Dynamically Bounded Array 1 211

dn 2dl0.a 2-D Dynamically Bounded Array 100 211

dn 3dl.a 3-D Dynamically Bounded Array 1 238

dn3dl0.a 3-D Dynamically Bounded Array 1000 333

-20-

Observations that can be made from the results in Table 7 are:

1. Time to allocate a discrete variable via the new allocator is around 101
microseconds.

2. Time to allocate integer array of size 1000 or more is around 190 microseconds.

3. Time to allocate dynamically bounded arrays increases as the dimensions of the
array increase.

Table 8 lists dynamic allocation benchmarks with new allocator and no storage
deallocation takes place. In Table 8, the column size of object for strings is
STRING'LENGTH, for integer arrays size of object is array'length, and for records
the size of object is specified as the number of fields in the record.

-21-

TABLE 8. NEW Allocator:No Storage DeaUocation

Execution time in microseconds

File Type Number Size of Time

Name Declared Declared Object (us)

dn-inl.a Integer 1 1 50

dn enl.a Enumeration 1 1 49

dn(stl.a
String

1
1

48

dnstl0.a String
1 10 49

dnstl00.a String 1 100 51

dn arl.a Integer Array 1 1 48

dn-arlO.a Integer Array 1 10 51

dn-ar00.a Integer Array 1 100 51

dnarlk.a Integer Array 1 1000 90

dn-rcl.a Record of Integer 1 1 48

dn rcl0.a Record of Integer 1 10 51

dn-rc20.a Record of Integer 1 20 58

dn rc50.a Record of Integer 1 50 59

dn-rcl00.a Record of Integer 1 100 59

dn-ldl.a 1-D Dynamically Bounded Array 1 1 110

dnldl0.a 1-D Dynamically Bounded Array 1 10 115

dn_2dl.a 2-D Dynamically Bounded Array 1 1 119

dn_2dl0.a 2-D Dynamically Bounded Array 1 100 121

dn_3dl.a 3-D Dynamically Bounded Array 1 1 149

dn_3d10.a 3-D Dynamically Bounded Array 1 1000 151

-22-

Some observations about the results in Table 8 are:

1. For objects upto size 100 or less, time for dynamic memory allocation remains
essentially the same, but for objects of size 1000 or more, memory allocation
increases by about 80% or more.

2. In these test cases, memory allocated is not being freed and therefore, the
measurements exclude the time to free the memory that is being allocated.
Hence, the timings listed in Table 8 are less than the timings listed in Table 7.

Table 9 lists dynamic allocation benchmarks with new allocator when active tasks is 5.
In Table 9, the column size of object for strings is STRING'LENGTH, for integer
arrays size of object is array'length, and for records the size of object is specified as
the number of fields in the record.

TABLE 9. NEW Allocator:Active Tasks = 5

Execution time in microseconds

File Type Number Size of Time
Name Declared Declared Object (us)

din stl00.a String 1 100 101

dn-arlk.a Integer Array 1 1000 197

dn rcl00.a Record of Integer 1 100 99

dn_ldl0.a 1-D Dynamically Bounded Array 1 10 203

dn_2d10.a 2-D Dynamically Bounded Array 1 100 211

dn_3dl0.a 3-D Dynamically Bounded Array 1 1000 333

-23-

Table 10 lists dynamic allocation benchmarks with new allocator when active tasks is
10 (object sizes are the same in Tables 9 and 10).. In Table 10, the column size of
object for strings is STRING'LENGTH, for integer arrays size of object is
array'length, and for records the size of object is specified as the number of fields in
the record.

TABLE 10. NEW Allocator:Active Tasks = 10

Execution time in microseconds

File Type Number Size of Time

Name Declared Declared Object (us)

dn.stl00.a String 1 100 101

dn-arlk.a Integer Array 1 1000 198

dnrcl00.a Record of Integer 1 100 99

dn-ldl0.a 1-D Dynamically Bounded Array 1 10 202

dn_2dl0.a 2-D Dynamically Bounded Array 1 100 211

dn_3dl0.a 3-D Dynamically Bounded Array 1 1000 333

Tables 9 and 10 show negligible impact of existing tasks in the system on the time for
memory allocation/deallocation.

4.2.3 Exceptions

Table 11 below gives the results for exception handling times for exceptions raised and
handled in a block for the DDC-I compiler. In this table, the word explicit has been
used for exceptions raised via the raise statement, and implicit is used for abnormal
conditions in the code.

-24-

TABLE 11. Exception Raised and Handled in Block

Execution time in microseconds

File Exception User Constraint Constraint Numeric Numeric
Name not raised defined error error error error

explicit explicit implicit explicit implicit

eOOOOl.a 02 92 117 125 122 131

eO00011.a 0.2 108 133 140 135 146

e00001 2.a 0.2 134 158 166 162 173

Some observations from Table 11 are:

1. For the DDC-I compiler, the overhead associated with the code sequence (that
has an exception handler associated with it, yet no exception is raised during the
execution of that code) is negligible.

2. For the user-defined exception, exception handling times are much less than
exception handling times for other exceptions.

3. As expected, times for handling NUMERICERROR (implicitly raised) is
higher than exception handling times for other exceptions. Exception handling
times are increased as more tasks are active in the system.

Table 12 below gives the results (for DDC-I compiler) for exception handling times
for exceptions raised and handled one level above: In this table, the word explicit has
been used for exceptions raised via the raise statement, and implicit is used for
abnormal conditions in the code.

-25-

TABLE 12. Exception Raised and Handled One Level Above

Execution time in microseconds

File User Constraint Constraint Numeric Numeric

Name defined error error error error

explicit explicit implicit explicit implicit

e00002.a 143 167 175 171 182

e00002_1.a 165 190 198 194 205

e00002_2.a 177 200 208 202 214

Some observations from Table 12 are:

1. After subtracting the timings obtained in the previous Table, it takes roughly
about 22 more microseconds to propagate and handle the exception one level
above where it is raised.

Table 13 below gives the results (for DDC-I compiler) for exception handling times

for exceptions raised and handled more than one level above:

TABLE 13. More Exception Handling Benchmarks

Execution time in microseconds

File Name Benchmark Description Time

e00003.a User Exception handled 3 procs above 241

eO0003 1.a User Exception handled 3 procs above,5 idle tasks 264

e00003.2.a User Exception handled 3 procs above,10 idle tasks 275

e00004.a User Exception Raised handled 4 procs above 290

e00004 1.a User Exception handled 4 procs above,5 idle tasks 312

e00004 2.a User Exception handled 4 procs above,10 idle tasks 324

Some observations from Table 13 are:

-26-

1. This benchmark reinforces the results about the extra time for each level (-50
microseconds: this is obtained by subtracting the time for e00003.a from
e000004.a) that the exception has to be propagated.

Table 14 lists TASKINGERROR exception benchmarks.

TABLE 14. TaskingError Exception Benchmarks

Execution time in microseconds

File Name Benchmark Description Time (us)

e00005.a Exception Raised in rendezvousO idle tasks 115

e00005_l.a Exception Raised in rendezvous,5 idle tasks 113

e000052.a Exception Raised in rendezvous,10 idle tasks 113

e00006.a Child task has error during elaboration,0 idle tasks STORAGEERROR

e00006_l.a Child task has error during elaboration,5 idle tasks STORAGE-ERROR

e00006_2.a Child task has error during elaboration,10 idle tasks STORAGE-ERROR

Active tasks in the system have no effect on exceptions raised and handled during a
rendezvous.

4.2.4 Chapter 13 Benchmarks

Table 15 lists all the Chapter 13 benchmarks.

- 27-

TABLE 15. Chapter 13 Benchmarks

Execution time in microseconds

File Name Benchmark Description Time (us)

h00001.a Boolean operations on arraysPragma PACK 10

h00001_l.a Boolean operations on arrays,Rep Clause Not compiled

h00001_2.a Boolean operations on arrays,not packed 923

h00002.a Boolean operations on array componentsPragma Pack 636

h000021.a Boolean operations on array componentsRep Clause Not compiled

h00002_2.a Boolean operations on array componentsnot packed 157

h00003.a Assignmentcomparison on arrays of booleansPragma PACK 771

h000031.a Assignmentcomparison on boolean arraysRep Clause Not compiled

h000032.a Assignmentcomparison on boolean arrays,not packed 24

h00004.a Assigncompare whole recordsno rep clause 11

h000041.a Assign, compare whole recordsrep clause 6

h00004_2.a Assign, compare whole recordsPragma PACK 2

hOO005.a UNCHECKED CONVERSION, INTEGER object to another 0.3

h00005_1.a UNCHECKED-CONVERSION, STRING to INTEGER 2

h000052.a UNCHECKEDCONVERSION,floating array to record No response

h00006.a Store, extract record bit fields, no rep clause 20

h00006l.a Store, extract record bit fields, rep clause 30

h00006_2.a Store, extract record bit fields, rep clause 31

h00008.a Store, extract record bit fields defmed Not compiled

by nested rep clauses using packed arrays

h00009.a Change of representation from one record to another Not compiled

hOO01O.a POSSUCC, and PRED operations on enum type with rep 53

clause numbered with gaps in internal coding

h0001Ol.a POS,SUCC, and PRED operations on enum type with rep 54

clause numbered with no gaps in internal coding

-28-

Some observations about the results in Table 15 are:

1. Boolean operations on whole unpacked arrays is considerably higher than on
whole packed arrays.

2. Time for boolean operations on packed array components is considerably higher
than time for boolean operations on unpacked array components. The logical
explanation is that it takes more time to unpack the record in order to perform
the operation.

3. Time for UncheckedConversion is nearly zero showing good optimization by
the compiler.

4. There is no effect on the execution time for enumeration representation clause
with no gaps and enumeration type representation clause with gaps.

5. Some programs could not be compiled. The compiler vendor has been
contacted.

4.2.5 Clock Function and TYPE Duration

Table 16 lists all the CLOCK tests.

TABLE 16. CLOCK Function Tests

Execution time in microseconds

File Name Benchmark Description Time (us)

c00001.a CLOCK function overhead 607.59

c00002.a CLOCK resolution 0.0001

Some observations about the results in Table 16 are:

1. For real-time applications, an overhead of 607 microseconds could be very
time-expensive. Generally speaking, a CLOCK function overhead of 100
microseconds is more suitable for real-time applications. It has to be compared
with the CLOCK function overhead of other Ada compilers.

2. The CLOCK resolution of 0.0001 microseconds is acceptable for real-time
applications. Again, it has to be compared with the CLOCK resolution of other

-29-

Ada compilers.

4.2.6 Numeric Computation

Table 17 lists the benchmarks that calculate the overhead involved in dynamic
computation of values of type TIME and DURATION.

TABLE 17. TIME and DURATION Mathematics

Execution time in microseconds

File Operation Time (us)

Name Performed

tml.a Time = Var time + Var duration 263

tm2.a Time = Var time + Const-duration 263

tm3.a Time = Var-duration + Var-time 263

tm4.a Time = Cost duration + Var time 263

tm5.a Time = Varatime - Var duration 262

tm6.a Time = Var time - Const duration 262

tm7.a Duration = Vartime - Var time 22

tm8.a Duration = Var duration + varduration 1.1

tm9.a Duration = Var duration + Const duration 1.1

tmlO.a Duration = Const duration + Var duration 1.2

tmll.a Duration = Coast duration + Coast duration 1.1

tml2.a Duration = Var duration - Var duration 1.3

tml3.a Duration = Var duration - Const duration 1.1

tml4.a Duration = Const duration - Var duration 1.2

t15.a Duration = Coast duration - Const duration 1.1

These timings have to be compared to results from other compilers.

- 30-

Table 18 lists the results of running mathematical computation benchmarks.

TABLE 18. Numeric Computation Benchmarks

Execution time in microseconds

File Operation Time

Name Performed

tm16.a Float Matrix Multiplication 798.0

tml7.a Float Matrix Addition 769.70

tml8.a Factorial Calculation 89.0

tml9.a Square root calculation 345.5

These timings have to be compared to results from other compilers.

4.2.7 Subprogram Overhead

Table 19 lists the types and modes of the parameters that are used in intra-package
subprogram overhead tests and also lists the results. In Table 19, the headings under
the Time column: I, 0, 10 have the times listed for parameters with mode in, out,
and in out.

-31-

TABLE 19. Subprogram Overhead (Intra-Package)

Execution time in microseconds

File Type of Parameter Number Size Time (us)

Name Passed Passed 1 0 10

d n.a 0 0 19

dil.a Integer 1 9 19 19

d i_10.a Integer 10 19 29 29

d i100.a Integer 100 49 68 117

d e 1.a Enumeration 1 9 19 19

d e_10.a Enumeration 10 19 29 29

d e_100.a Enumeration 100 48 78 107

dala Array of Integer 1 1 9 19 19

d_a_10.a Array of Integer 1 10 9 19 19

d-al00.a Array of Integer 1 100 9 19 19

d a_10k.a Array of Integer 1 10000 9 19 19

dr_l.a Record of Integer 1 1 9 19 19

d_r_100.a Record of Integer 1 100 19 19 19

dua..l.a Unconstrained array 1 1 19 19 19

d_u..alOO.a Unconstrained array 1 100 9 19 19

d_u.a.10k.a Unconstrained array 1 10000 9 19 19

d u-rl.a Unconstrained record 1 1 9 19 19

d u r lO0.a Unconstrained record 1 100 9 19 19

Observations about the results in Table 19 are:

1. For integer and enumeration types, subprogram overhead for variables of mode
out and in out is greater than that of mode in. This is because of the additional
overhead involved in copying back the parameters of mode out and in out when
returning from the procedure call.

- 32-

2. Also, the overhead for passing 100 integers is higher than the overhead for
passing 1 integer (due to the time required for copying the integers on the stack
when the procedure call is made).

3. The results for arrays and records indicate that they are passed by reference as
opposed to pass by copy.

4. The timings for unconstrained types suggest that there is very little extra
overhead in passing the constraint information in the procedure call.

Table 20 lists the types and modes of the parameters that are used in intra-package
tests with Pragma INLINE to determine if the INLINE pragma is supported and if it
is, the amount of overhead involved in executing code generated by by an in-line
expansion as opposed to executing the same set of statements originally coded without
a subprogram call. In Table 20, the headings under the Time column: I, 0, 1_0 have
the ti- res listed for parameters with mode in, out, and in out.

nm,.nmn nmm n nmm nmnnmmmm• •nnn I I l Im I I= i m

- 33-

TABLE 20. Subprogram Overhead (Intra-Package with Pragma INLINE)

Execution time in microseconds

File Type of Parameter Number Size Time (us)

Name Passed Passed I 0 1-0

i n.a 0 0 2

ii l.a Integer 1 2 3 4

i.i_10.a Integer 10 2 4 4

ii_100.a Integer 100 8 8 10

ie .a Enumeration 1 2 3 3

i e_10.a Enumeration 10 2 4 4

ie_100.a Enumeration 100 7 10 9

i_a.a Array of Integer 1 1 2 4 4

ia_10.a Array of Integer 1 10 2 4 4

i-a.100.a Array of Integer 1 100 2 4 3

i-a_10k.a Array of Integer 1 10000 2 4 4

i-rl.a Record of Integer 1 1 2 4 4

i-r_100.a Record of Integer 1 100 4 4 4

iu a l.a Unconstrained array 1 1 4 4 4

i u a100.a Unconstrained array 1 100 2 4 4

i u a10ka Unconstrained array 1 10000 2 4 4

i u r L.a Unconstrained record 1 1 2 4 4

i u r_100.a Unconstrained record 1 100 2 4 3

Observation about the results M Table 20 are:

1. The overhead due to INLINE expansion of code for parameters of type integer
and enumeration indicates that the overhead due to INLINE expansion is higher
than the time it takes to execute the same set of statements without a procedure
call.

-34-

2. For composite and unconstrained types, the timings indicate that the overhead
in executing code produced by pragma INLINE is negligible.

Inter-Package Reference Tests: In inter-package reference, the calling subprogram is
in a package other than the one in which the called subprogram resides. The
motivation for inter-package tests is to compare the subprogram call overhead time
between intra- and inter-package calls.

Table 21 lists the types of the parameters that are used in these tests and also lists the
results for the DDC-I compiler. In Table 21, the headings under the Time column: I,
0, 10 have the times listed for parameters with mode in, out, and in out respectively.

- 35-

TABLE 21. Subprogram Overhead (Inter-Package)

Execution time in microseconds

File Type of Parameter Number Size Time (us)

Name Passed Passed I 0 110

p n.a 0 0 9

pi..l.a Integer 1 9 20 21

pilO.a Integer 10 10 21 21

pi.100.a Integer 100 55 70 121

p..e_l.a Enumeration 1 9 19 19

p_e_10.a Enumeration 10 11 21 21

p_.e_100.a Enumeration 100 53 72 119

p_al.a Array of Integer 1 1 10 21 21

p_a_10.a Array of Integer 1 10 10 21 21

p_a_100.a Array of Integer 1 100 11 22 22

p_a_10k.a Array of Integer 1 10000 12 22 23

p_r_l.a Record of Integer 1 1 10 21 21

p_r100.a Record of Integer 1 100 22 23 23

p_u_al.a Unconstrained array 1 1 10 21 21

p_u_a100.a Unconstrained array 1 100 12 23 23

p_u_a_10k.a Unconstrained array 1 10000 12 23 23

p_ur_l.a Unconstrained record 1 1 10 23 23

p_u..rl00.a Unconstrained record 1 100 11 23 24

Observations about the results in Table 21 indicate:

1. The overhead for passing 100 integers is higher than the overhead for passing 1
integer (due to the time required for copying the integers on the stack when the
procedure call is made).

- 36-

2. The timings for records and arrays to indicate that they are passed by reference
as opposed to by copy.

3. The timings for unconstrained types seem to suggest that there is very little
extra overhead in passing the constraint information in the procedure call. Also,
unconstrained records and arrays are passed by reference.

Instantiations of Generic Code: In the tests for inter- and intra-package calls, the
subprograms are part of generic packages that are instantiated. These benchmarks
measure additional overhead involved in executing generic instantiations of the code.
Table 22 (for intra-package) and 23 (for inter-package) list the types of the
parameters that are used in these tests. In Tables 22 and 23, the headings under the
Time column: I, 0, I_0 have the times listed for parameters with mode in, out, and in
out respectively.

- 37-

TABLE 22. Subprogram Overhead (Intra-Package With generic Instantiation)

Execution time in microseconds

File Type of Parameter Number Size Time (us)

Name Passed Passed I 0 1O

g..n.a 0 0 19

gi..l.a Integer 1 12 24 25

g.il1_c.a Integer 10 23 34 35

giL100c.a Integer 100 56 79 121

g elc.a Enumeration 1 12 22 24

g_e_10c.a Enumeration 10 24 33 34

g_e_100_c.a Enumeration 100 54 89 119

g_alc.a Array of Integer 1 1 13 23 24

g_a_10.c.a Array of Integer 1 10 13 25 23

g_a100_c.a Array of Integer 1 100 12 24 23

g_a_10k.c.a Array of Integer 1 10000 13 24 24

g rlc.a Record of Integer 1 1 12 25 25

grl00c.a Record of Integer 1 100 23 26 26

Observations about the results in Table 22 indicate that:

1. The overhead for passing 100 integers is higher than the overhead for passing 1
integer (due to the time required for copying the integers on the stack when the
procedure call is made).

2. The timings for arrays and records indicate pass by reference.

3. Generic instantiation procedure call is more expensive than non-generic
instantiation procedure call.

-38-

TABLE 23. Subprogram Overhead (Inter-Package With Generic Instantiation)

Execution time in microseconds

File Type of Parameter Number Size Time (us)

Name Passed Passed I 0 I0

c n.a 0 0 18

c i .a Integer 1 18 35 32

c i1.a Integer 10 17 37 39

c i 100.a Integer 100 75 102 129

c e l.a Enumeration 1 18 34 35

c e 10.a Enumeration 10 19 34 35

c e 100.a Enumeration 100 81 109 129

c al.a Array of Integer 1 1 18 36 36

c.al0.a Array of Integer 1 10 19 35 35

ca_100.a Array of Integer 1 100 20 34 34

c.al0kLa Array of Integer 1 10000 21 43 41

c rl.a Record of Integer 1 1 19 35 33

c-r_100.a Record of Integer 1 100 36 35 36

Observations about the results in Table 23:

1. Times as listed for inter-package reference with generic instantiations are much
higher than with generic instantiations.

4.2.8 Pragmas

Table 23 lists the Pragma benchmarks. None of the pragma benchmarks (except for
Pragma Shared) produced any response on execution. The compiler vendor has been
contacted.

- 39-

TABLE 24. Pragma Benchmarks

File Name Benchmark Description Time Difference (us)

pr00001.a Pragma SUPPRESS used for Overflow-Check,

Division-Check, and RangeCheck No response

pr00001.1.a Pragma SUPPRESS used for Access-Check No response

pr00001_2.a Pragma SUPPRESS used for Index Check

and LengthCheck No response

pr00001..3.a Pragma SUPPRESS used for STORAGE CHECK No response

prOOOOL4.a Pragma SUPPRESS used for ELABORATION-CHECK No response

pr00001.5.a Pragma SUPPRESS used for INDEXCHECK No response

prO00O2.a Pragma CONTROLLED used for access type No response

prOO0O3.a Pragma SHARED,shared integer updated No effect

pr0031.a Pragma SHARED,shared integer updated No effect

during rendezvous

Some observations about the results in Table 24 are:

1. From the results obtained and also from looking at the compiler documentation,
it was determined that the DDC-I compiler does not implement pragma
SHARED.

-40-

4.2.9 Input/Output

Table 25 lists the benchmarks that deal with TEXT 10.

TABLE 25. Input/Output Benchmarks

Execution Time in Milliseconds

File Name Benchmark Description Time

ioOO001.a Create output file and copy characters 2789.0

io00O2.a Create output file, copy data using ENUMERATIONIO 2167.0

ioOO0O3.a Create output file, copy data using INTEGERIO 2109.0

io0004.a Create output file, copy data using FLOATIO 2009.0

io0005.a Create output file, copy data using FIXEDIO 1978.0

These benchmarks have to be compared with the results of other compilers.

4.3 Runtime Implementation Benchmarks

4.3.1 Tasking Implementation Dependencies

Table 26 lists the benchmarks that determine tasking implementation dependencies.

-41-

TABLE 26. Tasking Implementation Benchmarks

File Name Benchmark Description Results

rt_t001.a Is task space deallocated on return from procedure Yes
on task termination

rtt002.a Is task space deallocated upon task termination No
when access type is declared in library unit

rt t003.a Determine order of elaboration when several tasks See
are activated below

rt t004.a Can a task continue execution after its activation but Yes
prior to completion of activation of tasks declared
in the same declarative part

rt t005.a If allocation of task raises STORAGE ERROR Task
when is exception raised Activation

rtt006.a What happens to tasks declared in a library Do not
package when main task terminates terminate

rt_t007.a Print default attribute STORAGE-SIZE 0 bytes
and SIZE for tasks objects 16 bytes

rt t008.a Order of evaluation of tasks ih See
abort statement below

Some observations from the results in Table 26 are:

1. For rt_t003.a, the results for the DDC-I compiler indicate that the tasks are
activated in a random order and do not depend on the place where the task or
its body is declared.

2. For rtt007.a, the attribute TASK'STORAGE SIZE was printed as 0. This is
incorrect and the compiler vendor has been contacted with the results.

3. The DDC-I compiler aborts the tasks in the order they are named in the abort
statement.

4.3.2 Task Synchronization

Table 27 lists the benchmarks that determine task synchronization implementation

- - - -I I

-42-

dependencies. The results for these benchmarks are listed below the table as the
results cannot fit in the table column size.

TABLE 27. Rendezvous Implementation Benchmarks

File Name Benchmark Description

rt rOOl.a Algorithm used when choosing among branches

of selective wait statement

rt r002.a Order of evaluation of guard conditions

in a selective wait

rt r003.a Method to select from delay alternatives
of the same delay in selective wait

rt-r004.a Determine when expressions of an open delay

alternative or entry family index in an open
accept alternative evaluated

rt_r005.a Determine the priority of a task

which has no explicit priority specified

rt-r006.a Determine the priority of a rendezvous

between two tasks which have no explicit
priorities specified

1. rt_r001.a: The DDC-I compiler accepts the entry calls in the reverse order that
they are declared in the select statement. This implies that real-time embedded
programmers using the DDC-I compiler should place their most critical accept
statements at the end of the select statement. If a program is designed using
this knowledge, it may present performance and portability problems if the
application changes the compiler for which the program was designed initially.

2. rt_r002.a: The DDC-I compiler evaluates the guard conditions in the reverse
order that they are declared in the select statement.

3. rt_t003.a: The DDC-I compiler always selects the first delay alternative of the
same delay in a selective wait.

4. rt_r004.a: This benchmark did not execute on the DDC-I compiler. The
benchmark compiled fine, but could not execute. The program never returned.
The compiler vendor has been contacted.

-43-

5. rt r005.a: This benchmark determines the default priority of a task with
undefined priority value. For the DDC-I compiler, the default priority of a task
with undefined priority is PRIORITY'FIRST.

6. rt r006.a: This benchmark determines the default priority of a rendezvous
between two tasks with undefined priorities. For the DDC-I compiler, the
default priority of a rendezvous between two tasks with undefined priorities is
PRIORITY'FIRST.

4.3.3 Scheduling and Delay Statement

Table 28 lists the benchmarks for Scheduling and delay statement dependencies.

TABLE 28. Scheduling and Delay Statement Dependencies

File Name Benchmark Description Results

dtOOOOL.a Determine minimum delay time 0.001 sec

dt0002.a Determine if user tasks are pre-emptive Yes

dt00O3.a Determine method to share processor within See

each priority level below

dt0004.a Does delay 0.0 cause scheduling Yes

dt0003.a: For the DDC-I compiler, if time slicing is not enabled then tasks of the same
priority execute to completion unless a synchronization point is reached.

4.3.4 Memory Management

Table 29 lists the benchmarks for memory management dependencies.

-44-

TABLE 29. Memory management Dependencies

File Name Benchmark Description Results

mOOOO1.a Determine STORAGEERROR threshold 376 k

m00002.a Is Unchecked Deallocation implemented Yes

m00003.a Garbage Collection performed on fly No

m00003 1.a

m00004.a Garbage Collection performed on scope exit No

Some observations about the results in Table 29 are:

1. For the system that these benchmarks were run on, 94 arrays of 1000 integers
was the maximum storage space allocated. At this point STORAGEERROR
was raised. The size of the memory space available is approximately 376
kilobytes.

4.3.5 Asynchronous I/0

rtio001.a: The results of this benchmark show that the DDC-I compiler does not
implement true asynchronous I/O.

4.4 Real-Time Paradigms

Real-time paradigms can be coded in Ada using macro constructs and benchmarked.
Also, a compiler implementation may recognize these paradigms and perform
optimizations to implement that paradigm much more efficiently.

Table 30 lists real-time paradigms that have been benchmarked.

- 45-

TABLE 30. Real-time Paradigms

File Name Benchmark Description Time (us)

paOO001.a Simple producer consumer transaction 108

with main calling consumer task

paOOOO_l.a Simple producer consumer transaction with 168

consumer using selective wait

paOO001_2.a Simple producer consumer transaction with 108

producer task calling consumer task

paOO0013.a producer task communicates with consumer task 356

through a bounded buffer

paOOO00_4.a producer task communicates with consumer task 461

indirectly through a bounded buffer with a

transporter between buffer and consumer

paOOOO5.a producer task communicates with consumer task 583

indirectly through a bounded buffer with a

transporter between buffer and producer as well as

transporter between buffer and consumer

paOO001_6.a Producer task communicates with a 217

consumer via relay

pa0002.a Monitor using semaphores Error

paOO002_l.a Monitor using rendezvous 604

paOO002_2.a Monitor using rendezvous TaskingError

pa00004.a Abort a task and create a new one 3100

Some observations about the results in Table 30 are:

1. In paOO001.a, the time measured is the time it takes for the producer to call the
entry in the consumer, the start of rendezvous with the consumer accepting the
information, and the beginning of execution of the calling task. This is
equivalent to two context switches: the first from the main task to the called task
and the second from the called task to the main task. Time for this interaction
is 108 microseconds.

- 46-

2. In paOO001_l.a, the time measured is the time it takes for the producer to call
the entry in the consumer, the start of rendezvous with the consumer accepting
the information, and the beginning of execution of the calling task. Time for
rendezvous in this case is 168 microseconds.

3. This is similar to previous test, except that a producer task calls an entry in the
consumer task, instead of the main task calling an entry in the consumer task.
Both the producei and consumer task have the highest priority possible
(PRIOR1I'LAST). Time for a single rendezvous in this case is 108
microseconds.

4. In paOO0013.a, the producer task communicates with the consumer task
indirectly through a bounded buffer. Time taken by the consumer to receive
information from the producer via the buffer task is 356 microseconds.

5. In paOO001 4.a, a producer task communicates with a consumer task indirectly
through a bounded buffer with a transporter between the buffer and the
consumer. Time taken by the consumer to receive information from the
producer via the buffer and transporter tasks is 461 microseconds.

6. In paOO001l5.a, a producer task communicates with a consumer task indirectly
through a bounded buffer with a transporter between the buffer and the
producer as well as between the buffer and the consumer. Time taken by the
consumer to receive information from the producer is 583 microseconds.

7. In paOO001_6.a, a producer task communicates with a consumer via the relay.
Time taken by the consumer to receive information from the producer is 217
microseconds.

- 47-

5. Conclusions

In this report, real-time benchmarks developed at the Center for Software
Engineering [1] have been run on the DDC-I Ada compiler system targeted to the
Intel 80XXX family of microprocessors as well as on the self-hosted HP Ada compiler
for the HP 9000/350 computer. Extensive measurements have been made in the areas
of importance for real-time systems and the results analyzed. By running these
benchmarks on additional compilers, the validity of using this set of Real-time
benchmarks has been demonstrated and they have been proven to be portable to other
environments. The results produced by running the real-time benchmarks provide
valuable and useful information to programmers in evaluating compilers for real-time
applications. The results of the Real-time benchmarks in Appendix A also enable
users to compare the performance of different releases of the HP Ada compiler.

The performance of Ada systems is a complex subject and assessing and comparing
performance for real-time programming is a difficult task. The goal of the Real-time
benchmarks is to measure the performance of Ada features of importance for
programming real-time systems as well the Ada RTS implementation dependencies.
Although the benchmark programs are designed to avoid unnecessary and unwanted
operating system interference, there are certain basic functions of the operating
system that cannot be avoided in some cases (e.g. virtual memory support). It may
also be the case that no operating system is present, and the compiler's RTS is
responsible for supporting all runtime functions. No matter how the support of the
runtime environment is implemented, the Real-time benchmarks are intended to
measure the performance of what is actually available to the user. The Real-time
benchmarks provide a set of benchmarks that are easily portable to other systems and
can be used to determine the performance of Ada real-time features.

-48-

REFERENCES

[1] CECOM Center for Software Engineering, "Real-time Performance
Benchmarks for Ada", C02-092LY-0001-00, Final Report delivered by Arvind

Goel, March 1989.

[2] CECOM Center for Software Engineering, "Documentation for Real-time
Performance Benchmarks for Ada", C02-092LY-0002-00, Final Report
delivered by Arvind Goel, March 1989.

[3] R.M. Clapp et al., "Towards Real-time Performance Benchmarks for Ada",
CACM, Vol. 29, No. 8, August 1986.

[4] N. Altman, "Factors Causing Unexpected Variations in Ada Benchmarks",
Technical Report, CMU/SEI-87-TR-22, October 1987.

[5] N. Altman et al., 'Timing Variation in Dual Loop Benchmarks" , Technical

Report, CMU/SEI-87-TR-21, October 1987.

[6] CECOM Center for Software Engineering, "Catalog of Ada Runtime
Implementation Dependencies", C02 092LA 0001, Final report delivered by
LabTek (revised ARTEWG document), 15 Feb 1989.

[7] "Catalog of Interface Features and Options for the Ada Runtime Environment
", ARTEWG Report, December, 1987.

[8] M. D. Broido, "Toward Real-time Performance Benchmarks For Ada",
Technical Correspondence, CACM, Vol. 30, No. 2, February 1987.

[9] L MacLaren, "Evolving Toward Ada in Real-time Systems", Proceedings of
the ACM, SIGPLAN Symposium on the Ada Programming Language,
November, 1980.

[101 N. Weiderman et al., "Ada for Embedded Systems: Issues and Questions",
Technical Report, CMU/SEI-87-TR-26, October 1987.

[111 SofIech Inc., "Real-time Ada", July, 1984.

[12] A. Goel, E.Wong, "Evaluation of Existing Benchmark Suites For Ada", Ada
Technology Conference Proceedings, Washington DC, March 15-20,1988.

[13] CECOM Center for Software Engineering, "Establish and Evaluate Ada
Runtime Features of Interest for Real-time Systems", C02092LA0003, Final
report delivered by IITRI, 15 Feb 1989.

- 49-

[14] "Proceedings of the International Workshop on Real-time Ada Issues", UK,
13-15 May, 1987, pages 10-11.

[15] A. Tetewsky, A. Clough, R. Racine, R. Whittredge, "Mapping Ada onto
Embedded Systems:Memory Constraints", Ada Letters, September/October,
1988.

[16] Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User's Guide, Report D500-11790-2, Boeing Military Aerospaces, P.O.
Box 7730, Wichita, Kansas, 1988.

[17] Ada Compiler Evaluation Capability (ACEC) Version Description Document,
Report D500-11790-3, Boeing Military Airplane, P.O. Box 7730, Wichita,
Kansas, 1988.

[181 CECOM Center For Software Engineering, "Performance Measurements of
the CHS Ada Compiler", Final report delivered by Unixpros Inc., 15
December, 1989.

- 50-

Appendix A: Execution Results For the HP Ada
Compiler

Appendix A presents the results of running the Real-time benchmarks on the HP Ada
Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine under HP-UX
Release 6.2. The hardware and software configuration is as follows:

HP Testbed Hardware and Software:

The hardware used for benchmarking was Hewlett-Packard 9000/350 CPU running
HP-UX V 6.2. The setup can be summarized as follows:

Host: HP 9000/350 running HP-UX V 6.2.

Compiler: Self-hosted HP (basically the Alsys Ada Compiler)
Ada Development System Version 3.25 and 4.35.

Target: Same as the host.

Tables 31 through 61 list the results of running the Real-time benchmarks on the HP
Ada compilers. Any observations about the results are presented below the
corresponding tables. A detailed description of the performance measurements of the
HP Ada compilers is presented in report [18].

-51-

TABLE 31. HP Results: Task/Activation Termination Benchmarks

Execution time in Microseconds

File Name Benchmark Description HP3.25 HP4.35

tOO001.a Task type in main, object in block statement 14281.5 10079.2

tOO001 1 Task object is declared directly in block statement 14178.0 11089.0

t00001.2.a Task type and object defined in package procedure 14167.0 11010.0

t000013.a Task type in package, object in package procedure 13989.0 10890.0

t00001_4.a Task type and object are declared in another task 14267.0 11008.0

t00002.a Task type and array elaborated in a procedure 14389.0 11890.0

t00002 1.a Task type in package, array in procedure 14379.0 11870.0

t000022.a Task type in main, array in package procedure 14567.0 12089.0

t00003.a Task object is declared as part of record 13980.0 10789.0

t00004.a Task access type in main, task created via new 14221.7 11682.2

t00004 1.a Task access type in I !, task created via new 14210.0 11689.0

t000042.a Task access type in main, array created via new 14217.0 11790.0

t00005.a Task object in block statement, idle tasks= 1 14234.0 11678.0

t00005_1.a Task object in block statement, idle tasks = 5 14567.0 11980.0

t00005_2.a Task object in block statement, idle tasks= 10 14678.0 11897.0

t000053.a Task object in block statement, idle tasks= 20 14789.0 11789.0

t00006.a Task created via new allocator, idle tasks = 1 14220.0 11683.0

t000061.a Task created via new allocator, idle tasks= 5 14367.0 11768.0

t000062.a Task created via new allocator, idle tasks= 10 14456.0 11789.0

t00006 3.a Task created via new allocator, idle tasks = 20 14983.0 118.0

* Results for the HP4.35 compiler show an improvement of nearly 4000 microseconds (30 %) for task

activation/termination timings for tasks not allocated via the new allocator.

* Results for the HP4.35 show an improvement of nearly 2500 microseconds (18 %) for task

activation/termination timings via the new operator.

- 52-

. There is little effect on task activation/termination timings when the number of idle tasks increases.

- 53 -

TABLE 32. HP Results: Simple Rendezvous Benchmarks (No Parameters Passed)

Time in Microseconds

Name Description HP3.25 HP435

rOO001.a Procedure calls entry of task declared in main 1756.0 1702.0

rOO001_l.a Procedure calls entry in task created via new 1768.0 1697.0

rOO001_2.a Main calls entry in task decl in package 1778.0 1787.0

r00002.a Main calls two entries in two tasks decd in package 1769.0 1690.0

r00002 1.a Main calls 10 entries in ten tasks decl in package 1806.0 1702.0

r00002_2.a Main calls 10 entries in one task decl in package 1799.0 1708.0

r00003 Main calls 1st entry in select, 2 entries declared 2612.0 2248.0

r00003 1 Main calls last entry in select, 2 entries declared 2656.0 2260.0

r00003 2.a Main calls 1st entry in select, 10 entries decl 3389.0 2667.0

r00003 3.a Main calls last entry in select, 10 entries dccl 3399.0 2697.0

rOO003.4.a Main calls 6th entry in select, 10 entries decl 3395.0 2687.0

r00003 5 Main calls 1st entry in select, 20 entries declared 4022.0 3474.0

r00003 6 Main calls last entry in select, 20 entries declared 4058.0 3508.0

r00003 7 Main calls 11th entry in select, 20 entries declared 4024.0 3474.0

r00004.a Main calls 1st entry out of 2, 1st guard true next false 2612.0 2249.0

r00004 l.a Main calls last entry out of 2, 1st guard false next true 2665.0 2259.0

rO0004 2.a Main calls 1st entry out of 20, 1st guard true rest false 4021.0 3471.0

r000043.a Main calls last entry out of 20, last guard true rest false 4059.0 3589.0

r00004 4.a Main calls 11th entry out of 20, 11th guard true rest false 4032.0 3491.0

r00004.5.a Main calls 11th entry out of 20, all guards true 4056.0 3678.0

* For both the HP compilers, the timing for rendezvous is nearly the same for the scenarios in which

the main program calls ten entries in 10 different tasks or the main program calls 10 entries in one

task.

* The more the number of entries in a select statement, the more time it takes to rendezvous with

any entry in the select statement (for both the HP compilers).

-54-

* Position of the accept in the select statement does not affect the rendezvous timings for both HP

compilers.

- 55 -

TABLE 33. HP Results: Complex Rendezvous Benchmarks

Time in Microseconds

Name Direction Type and Size HP3.25 HP435

Passed Number Passed

r00005 i In Integer Array 1 2070.0 1838.0

r00005_o out Integer Array 1 2080.0 1870.0

rOO005io In Out Integer Array 1 2080.0 1870.0

rOO5li In Integer Array 1000 1974.0 1908.0

rOOOO5-1o Out Integer Array 1000 1984.0 1924.0

rOO005lio In Out Integer Array 1000 1984.0 1924.0

r00005 2i In Integer Array 10000 1974.0 1908.0

r00005_2 o Out Integer Array 10000 1984.0 1924.0

r00005_2 o In Out Integer Array 10000 1984.0 1924.0

r00005_1i In 1 Integer 2062.0 1816.0

r000053o Out 1 Integer 2069.0 1820.0

r000053 2o In Out 1 Integer 2069.0 1820.0

r00005 4i In 10 Integers 2056.0 1818.0

r000054o In Out 10 Integers 2078.0 1834.0

r000054io In Out 10 Integers 2078.0 1834.0

r00005 5 i In 100 Integers 2784.0 1930.0

r0005 5 o Out 100 Integers 2765.0 1996.0

rO0005O5 io In Out 100 Integers 27650 1996.0

* Rendezvous times indicate that arrays are passed by reference for both HP compilers.

* As far as passing integer parameters during a rendezvous, the HP compilers use pass by copy (as

the time for rendezvous increases with the increase in the number ol integer parameters). Also, the

rendezvous time for mode in out parameters is generally more than the time required for

parameters of mode in.

- 56-

* There is a significant improvement of 800 microseconds (30 %) for the BP435 compiler in

rendezvous timings when 100 integer parameters are passed during the rendezvous.

-57 -

TABLE 34. HP Results: More Rendezvous Benchmarks

Execution time in microseconds

File Name Benchmark Description HP325 HP435

r00006 1 1.a 1st entry out of 2 called with 10 integers 2089.0 1823.0

r000612.a 1st entry out of 2 called with 100 integers 2789.0 1978.0

r0000621.a Last entry out of 2 called with 10 integers 2378.0 1978.0

r000062 2.a Last entry out of 2 called with 100 integers 2874.0 2456.0

r000062_3.a 1st entry out of 10 called with 10 integers 3387.0 2678.0

r00006_3_2.a 1st entry out of 10 called with 100 integers 3567.0 2890.0

r0000641.a Last entry out of 10 called with 10 integers 3434.0 2760.0

r00006 4 2.a Last entry out of 10 called with 100 integers 3690.0 2867.0

r00006_5l.a 1st entry out of 20 called with 10 integers 3645.0 2867.0

r000065_2.a 1st entry out of 20 called with 100 integers 3789.0 2899.0

r0000661.a Last entry out of 20 called with 10 integers 3900.0 2956.0

r00006 62.a Last entry out of 20 called with 100 integers 3989.0 2978.0

r00007.a Overhead due to terminate alternative 28.9 1483

r00008.a Overhead of conditional entry callrendezvous complete 5.0 4.8

r00008_l.a Overhead of conditional entry cal,rendezvous incomplete 25.0 21.0

r00009.a Overhead of timed entry callrendezvous complete 5.9 4.9

r0(009_l.a Overhead of timed entry callrendezvous incomplete 27.0 20.4

r00011.a Main calls an entry with 100 Integers,Idle tasks = 1 2784.0 1978.0

r00011l.a Main calls entry with 100 Integers,Idle tasks = 5 2876.0 1989.0

rOO0112.a Main calls entry with 100 Integers,Idle tasks = 10 2877.0 1976.0

rOO011_3.a Main calls entry with 100 Integers,Idle tasks = 20 2901.0 1999.0

- 58-

TABLE 35. HP Results: Memory Allocation: Storage Allocated is Fixed

Time in Microseconds

Name Type Number Size HP325 HP4.35

Declared Declared

ddinl Integer 1 0.8 0.2

dd-inl0 Integer 10 5.8 2.6

ddinlOO Integer 100 21.6 20.0

dd-stl String 1 1 1.0 1.0

ddstl0 String 1 10 1.6 1.0

ddstlOO String 1 100 3.2 2.2

dd enl Enumeration 1 0.8 0.2

dd enl0 Enumeration 10 5.8 2.6

dd enl00 Enumeration 100 21.6 20.0

ddarl Array of Integer 1 1 0.6 0.5

dd arl0 Array of Integer 1 10 0.6 0.5

ddarl0O Array of Integer 1 100 0.6 0.6

dd arlk Array of Integer 1 1000 0.6 0.6

ddarl0k Array of Integer 1 10000 0.6 0.6

dd arl00k Array of Integer 1 100000 0.6 0.6

* For the HP Ada compilers, time required to allocate integer variables, enumeration variables,

strings and arrays of integers upon entering a subprogram is negligible.

- 59-

TABLE 36. HP Results: Dynamic Memory Allocation: Storage Allocated is Variable

Tune in Microseconds

Name Type Number Size HP3.25 HP435

Declared Declared of Object

ddldl 1-D Dynamically Bounded Array 1 1 10.4 9.8

dd.ldl0 1-D Dynamically Bounded Array 1 10 10.6 10.2

dd_2dl 2-D Dynamically Bounded Array 1 1 15.8 15.0

dd-2d 2-D Dynamically Bounded Array 1 100 15.6 14.8

dd_3dl 3-D Dynamically Bounded Array 1 1 25.6 24.4

dd.3dG 3-D Dynamically Bounded Array 1 1000 25.6 24.6

Time required for allocating dynamically bounded arrays increased with the number of dimensions

for the HP Ada compilers.

- 60-

TABLE 37. HP Results: Dynamic Memory Allocation with the NEW Allocator

Time in Microseconds

Name Type Declared Size of Object HP325 HP435

dn-inl Integer 1 200.0 80.0

dn enI Enumeration 1 200.0 80.0

dn-stl String 1 140.0 80.0

dn-stlO String 10 140.0 80.0

dnstlO0 String 100 260.0 80.0

dnat1 Integer Array 1 140.0 80.0

dnarl0 Integer Array 10 160.0 80.0

dnarloo Integer Array 100 220.0 80.0

dn,_arlk Integer Array 1000 260.0 80.0

dnrcl Integer Record 1 140.0 80.0

dn rcl0 Integer Record 10 160.0 80.0

din rcl00 Integer Record 100 220.0 80.0

dnldl 1-D Dynamically Bounded Array 1 220.0 80.0

dn idl0 1-D Dynamically Bounded Array 10 280.0 100.0

dn_2dl 2-D Dynamically Bounded Array 1 260.0 100.0

du 2d10 2-D Dynamically Bounded Array 100 280.0 100.0

dn_3dl 3-D Dynamically Bounded Array 1 260.0 120.0

dn_3dlO 3-D Dynamically Bounded Array 1000 280.0 120.0

* HP4.35 compiler takes at least 40% less time for memory allocation/deallocation via the new

allocator as compared to HP3.25 compiler.

-61-

TABLE 38. HP Results: New Allocator: No Storage Deallocation

Time in Microseconds

Name Type Declared Size of Object HP3.25 HP4.35

dn-inl Integer 1 210.0 85.0

dnenl Enumeration 1 210.0 85.0

dnisti String 1 146.0 86.0

dn..stlo String 10 146.0 84.0

dnstl00 String 100 264.0 83.0

dnarl Integer Array 1 149.0 87.0

dnarl0 Integer Array 10 164.0 81.0

dnarl00 Integer Array 100 223.0 82.0

dnarik Integer Array 1000 264.0 85.0

dnrcl Integer Record 1 139.0 84.0

dnrclO Integer Record 10 161.0 89.0

dn rcl00 Integer Record 100 220.0 80.0

dnldl 1-D Dynamically Bounded Array 1 223.0 89.0

dndl0 1-D Dynamically Bounded Array 10 286.0 110.0

dn_2dl 2-D Dynamically Bounded Array i 263.0 110.0

dn_2d10 2-D Dynamically Bounded Array 100 279.0 104.0

dn3dl 3-D Dynamically Bounded Array 1 264.0 129.0

dn_3d10 3-D Dynamically Bounded Array 1000 281.0 121.0

- 62-

TABLE 39. HP Results: NEW AllocatorActive Tasks = 5

Execution time in microseconds

File Type Number Size of MF3.25 HP4.35

Name Declared Declared Object

dn.stl00.a String 1 100 260.0 80.0

dnarlk.a Integer Array 1 1000 260.0 80.0

dn-rcl00.a Record of Integer 1 100 220.0 80.0

dn_ldl0.a 1-D Dynamically Bounded Array 1 10 280.0 100.0

dn_2dl0.a 2-D Dynamically Bounded Array 1 100 280.0 100.0

dn..3d10.a 3-D Dynamically Bounded Array 1 1000 280.0 120.0

0

- 63 -

TABLE 40. HP Results: NEW Allocator'Active Tasks =10

Execution time in microseconds

File Type Number Size of HP3.25 HP4.35

Name Declared Declared Object

dn.stl00.a String 1 100 260.0 80.0

dn-ark.a Integer Array 1 1000 260.0 80.0

dnrcl00.a Record of Integer 1 100 220.0 80.0

dn ldl0.a 1-D Dynamically Bounded Array 1 10 280.0 100.0

dn_2d10.a 2-D Dynamically Bounded Array 1 100 280.0 100.0

dn_3dl0.a 3-D Dynamically Bounded Array 1 1000 280.0 120.0

Results show negligible effect of idle tasks on mzmory allocation/deallocation timings.

-64-

TABLE 41. HF Results: Exception Raised/Handled in Block - HP3.25

Execution time in microseconds

File Exception User Constraint Constraint Numeric Numeric

Name not raised defined error error error error
explicit explicit implicit explicit implicit

eOO001.a 1.2 2134.5 2189.0 2234.0 2349.0 2136.0

e00001_1.a 1.3 2144.5 2199.0 2254.0 2379.0 2186.0

eOO0012.a 1.3 2149.5 2191.0 2258.0 2389.0 2189.0

- 65 i

TABLE 42. HP Results: Exception Raised/Handled in Block - HP4.35

Execution time in microseconds

File Exception User Constraint Constraint Numeric Numeric

Name not raised defined _error error error error

explicit explicit implicit explicit implicit

eOOOOl.a 1.2 1407.6 1456.0 1501.0 1489.0 1478.0

eOO001l.a 1.2 1427.6 1476.0 1511.0 1499.0 1488.0

eOO001 2.a 1.2 1437.6 1479.0 1515.0 1491.0 1489.0

H HP435 shown an improvement of about 25% over the HP3.25 compiler for exception handling
timings.

- 66 -

TABLE 43. HP Results: Exception Raised/Handled One Level Above - HP3.25

Execution time in microseconds

File Exception User Constraint Constraint Numeric Numeric

Name not raised defined error error -error -error
explicit explicit implicit explicit implicit

eOOOOl.a 1.2 29345 2989.0 3034.0 3249.0 3036.0

e00001L.a 13 3044.5 3099.0 3054.0 3279.0 3086.0

e000012.a 13 3049.5 3091.0 3058.0 3289.0 3089.0

Time to propagate an exception one level above is -950 microseconds for the HP3.25 compiler.

-67-

TABLE 44. HP Results: Exception Raised/Handled One Level Above - HP435

Execution time in microseconds

File Exception User Constraint Constraint Numeric Numeric

Name not raised defined _error error error error

explicit explicit implicit explicit implicit

e00001.a 1.2 2207.6 2256.0 2301.0 2289.0 2278.0

e000011.a 1.2 2227.6 2276.0 2311.0 2299.0 2288.0

eO0001_2.a 1.2 2237.6 2279.0 2315.0 2291.0 2289.0

Time to propagate an exception one level above is -850 microseconds for the HP435 compiler.

- 68-

TABLE 45. HP Results: TaskingError Exception Benchmarks

Execution time in microseconds

File Name Benchmark Description HP3.25 HF4.35

e00005.a Exception Raised in rendezvous,0 idle tasks 8331.0 5308.0

e00005La Exception Raised in rendezvous,5 idle tasks 8333.0 5408.0

e00005_2.a Exception Raised in rendezvous,10 idle tasks 8343.0 5309.0

e00006.a Child task has error during elaborationO idle tasks 8456.0 5345.0

e00006_1.a Child task has error during elaboration,5 idle tasks 8467.0 5347.0

e00006_2.a Child task has error during elaboration,10 idle tasks 8499.0 5434.0

- 69-

TABLE 46. HP Results: Chapter 13 Benchmarks

Execution time in microseconds

File Name Benchmark Description HP3.25 HP435

hOO001.a Boolean operations on arraysPragma *' CK 14.5 4.7

hOO001.1.a Boolean operations on arrays,Rep Clause 14.9 5.6

h00001_2.a Boolean operations on arrays,not packed 15.6 15.9

h00002.a Boolean operations on array componentsPragma Pack 23.0 7.9

h00002_l.a Boolean operations on array componentsRep Clause 26.9 8.1

h000022.a Boolean operations on array componentsnot packed 11.9 7.8

h00003.a Assignmentcomparison on arrays of booleans,Pragma PACK 103 4.6

h00003_l.a Assignmentcomparison on boolean arrays,Rep Clause 11.5 4.9

h00003 2.a Assignment,comparison on boolean arrays,not packed 17.9 7.9

h00004.a Assigncompare whole recordsno rep clause 8.2 8.7

h00004 1.a Assign, compare whole recordsrep clause 8.9 4.5

h00004_2.a Assign, compare whole records,Pragma PACK 9.6 6.7

h00005.a Unchecked-conversion, Integer object to another 0.9 0.8

hOO005_l.a Uncheckedconversion, String to Integer 1.2 1.1

h00005_2.a UncheckedconversionFloating array to record 1.9 2.1

h00006.a Store, extract record bit fields, no rep clause 11.2 7.6

h00006_l.a Store, extract record bit fields, rep clause 13.4 9.7

h00006 2.a Store, extract record bit fields, rep clause 14.2 10.1

h00008.a Store, extract record bit fields defined 13.8 8.1

by nested rep clauses using packed arrays

h00009.a Change of representation from one record to another 12.1 4.8

h00010.a POS,SUCC, and PRED operations on enum type with rep 19.1 13.2

clause numbered with gaps in internal coding

h001_l.a POS,SUCC, and PRED operations on enum type with rep 23.1 11.2

clause numbered with no gaps in internal coding

- 70-

TABLE 47. HP Results: CLOCK Function Tests

Execution time in microseconds

File Name Benchmark Description HP3.25 HP435

c00001.a CLOCK function overhead 11343 1220.1

c0(002.a CLOCK resolution 100.0 100.0

- 71 -

TABLE 48. UP Results: TIME and DURATION Mathematics

Execution time in microseconds

File Operation HF3.25 HP435

Name Performed

tml.a Time = Var time + Var duration 2.3 2.3

tm2.a Time = Var-time + Const-duration 2.7 2.9

tm3.a Time = Var-duration + Var-time 2.2 2.1

tm4.a Time = Const duration + Var-time 23 2.9

tm5.a Time = Var time - Var-duration 2.7 2.0

tm6.a Time = Var-time - Coast-duration 2.3 2.1

tm7.a Duration = Var-time - Var-time 2.4 2.3

tm8.a Duration = Var-duration + var duration 2.4 2.1

tm9.a Duration = Var duration + Coast-duration 2.5 2.2

tmlO.a Duration = Coast-duration. + Var-duration 2.4 2.1

tml-2.a Duration = Const-duration + Coast-duration 2.6 2.2

tml2.a Duration = Var-duration - Var duration 2.5 2.1

tml3.a Duration = Var-duration - Coast-duration 2.4 2.1

tml4.a Duration = Coast duration - Var-duration 2.5 2.2

tmlS.a Duration = Coast-duration - Coast duration !2.6 2.2

-72-

TABLE 49. HP Results: Numeric Computation Benchmarks

Execution time in microseconds

File Operation HP3.25 HP435
Name Performed

tml6.a Float Matrix Multiplication 995.0 845.0

tml7.a Float Matrix Addition 901.4 924.0

tml8.a Factorial Calculation 105.0 139.0

tml9.a Square root calculation 456.0 398.0

- 73 -

TABLE SO. HP Results: Subprogram Overhead (Intra-Package)

Time in Microseconds

HIP3.25 HP4.35
Name Parameter Type Number Passed Size

In Out In Out In Out In Out

d-n 0 2.0 2.0

d i-1 Integer 1 4.0 5.0 6.0 4.0 5.0 6.0

d-i_10 Integer 10 8.0 10.0 12.0 8.0 10.0 12.0

d i 100 Integer 100 62.0 66.0 118.0 64.0 68.0 124.0

d_a_1 Array of Integer 1 1 2.0 2.0 2.0 2.0 2.0 2.0

d-al10 Array of Integer 1 10 2.0 2.0 2.0 2.0 2.0 2.0

d a100 Array of Integer 1 100 4.0 6.0 6.0 6.0 6.0 8.0

d a_10k Array of Integer 1 10000 2.0 2.0 2.0 2.0 2.0 2.0

d-u a_1 Unconstrained array 1 1 2.0 4.0 4.0 4.0 4.0 2.0

d u a_100 Unconstrained array 1 100 2.0 2.0 2.0 4.0 4.0 4.0

du _a_10k Unconstrained array 1 10000 4.0 2.0 4.0 4.0 4.0 4.0

" For parameters of type integer, subprogram overhead for variables of mode out and in out is

greater than that of mode in. This is because of the additional overhead involved in copying back

the parameters of mode out and in out when returning from the procedure call. However, the

overhead for passing 100 integers of mode in out is twice as much (124 microseconds) for 100

integers of mode out for both the HF compilers.

" The overhead for passing 100 integers is higher than the overhead for passing 1 integer (due to the

time required for copying the integers on the stack when the procedure call is made).

" The timings for arrays of integer indicate that it is passed by reference. (as pass by reference times

do not vary with the length of the array passed).

* The timings for unconstrained array types suggest that there is very little extra overhead in passing

the constraint information in the procedure call.

- 74-

TABLE 51. HP Results: Subprogram Overhead (Intra-Package with Pragma INLINE)

Time in Microseconds

HP3.25 HP435
Name Parameter Type Number Passed Size

In Out In Out In Out In Out

i n 0 2.0 2.1

i i1 Integer 1 2.0 2.0 2.0 2.0 2.0 2.0

i10 Integer 10 6.1 8.2 12.1 6.0 3.0 12.0

U100 Integer 100 61.0 65.0 122.0 60.0 66.0 120.0

i_a1 Array of Integer 1 1 1.9 2.1 ".2 2.0 2.0 2.1

i_a_10 Array of Integer 1 10 1.8 2.1 2.1 2.0 2.0 2.0

i_a_100 Array of Integer 1 100 1.9 2.0 2.1 2.0 2.0 2.0

i_a_10k Array of Integer 1 10000 2.0 2.1 2.1 2.0 2.0 2.0

iu-a_1 Unconstrained array 1 1 2.9 2.8 2.8 2.7 2.7 2.7

iu a_100 Unconstrained array 1 100 2.9 2.8 2.8 2.7 2.6 2.7

iuaOk Un ,nstrained array 1 1000 2.7 2.8 2.9 2.6 2.7 2.7

The timings indicate that procedure calls with pragma INLINE execute faster than procedures
without pragma INLINE.

- 75 -

TABLE 52. HP Results: Subprogram Overhead (Inter-Package)

Time in Microseconds

HP3.25 -P435
Name Parameter Type Number Passed Size

In Out In Out In Out In Out

p-n 0 2.0 2.0

p i Integer 1 4.0 4.0 6.0 4.0 4.0 6.0

p-i10 Integer 10 8.0 10.0 12.0 8.0 6.0 12.0

pil100 Integer 100 62.0 56.0 118.0 64.0 60.0 124.0

p_a_1 Array of Integer 1 1 2.0 2.0 2.0 2.0 2.0 2.0

p_a_10 Array of Integer 1 10 2.0 2.0 2.0 2.0 2.0 2.0

p_a_100 Array of Integer 1 100 4.0 6.0 6.0 6.0 6.0 8.0

p a_10k Array of Integer 1 10000 2.0 2.j 2.0 2.0 2.0 2.0

p_u..al Unconstrained array 1 1 2.0 4.0 4.0 4.0 4.0 2.0

p_u_a_100 Unconstrained array 1 100 2.0 2.0 2.0 4.0 4.0 4.0

p_ua_10k Unconstrained array 1 10000 4.0 2.0 4.0 4.0 4.0 4.0

* The results indicate that there is no extra overhead between inter-package subprogram call as

opposed to intra-package subprogram calls.

- 76-

TABLE 53. HP Results: Subprogram Overhead (Intra-Package with Generic Instantiations)

Time in Microseconds

HP3.25 H?435
Name Parameter Type Number Passed Size -

In Out In Out In Out In Out

gnc 0 2.0 2.0

g ilc Integer 1 4.0 4.0 6.0 4.0 4.0 5.0

g il10c Integer 10 8.0 8.0 18.0 8.0 8.0 18.0

g_i100_c Integer 100 60.0 68.0 130.0 66.0 68.0 114.0

g_a_1_c Array of Integer 1 1 6.0 8.0 8.0 6.0 8.0 8.0

g_a_10_c Array of Integer 1 10 8.0 10.0 10.0 8.0 10.0 10.0

g_a_100_c Array of Integer 1 100 12.0 14.0 15.0 11.0 13.0 14.0

g_a10k c Array of Integer 1 10000 12.0 14.0 14.0 12.0 14.0 14.0

" For integer parameters, the timings are compatible for intra-package with generic instantiations as

opposed to without generic instantiations.

" For arrays of integers, there is an increase of more than 50% for intra-package with generic

instantiations as opposed to without generic instantiations.

- 77-

TABLE 54. HP Results: Subprogram Overhead (Inter-Package with Generic Instantiations)

Time in Microseconds

H?3.25 HP4.35
Name Parameter Type Number Size

In Out In Out In Out In Out

c¢n 0 2.0 2.0

c i1 Integer 1 4.0 6.0 6.0 2.0 4.0 6.0

ci10 Integer 10 8.0 8.0 18.0 8.0 8.0 18.0

c i_100 Integer 100 60.0 68.0 132.0 75.0 79.0 119.0

ca-l Array of Integer 1 1 10.0 10.0 14.0 4.0 6.0 6.0

c a_10 Array of Integer 1 10 22.0 26.0 48.0 12.0 14.0 20.0

c_a100 Array of Integer 1 100 220.0 236.0 408.0 72.0 80.0 144.0

c_a10k Array of Integer 1 10000 23362.0 23958.0 49526.0 9360.0 9556.0 20744.0

* For integer arrays of size 100 or more, there is a big difference in the times without generic

instantiations and with generic instantiations: 49526 (20744) microseconds for the HP3.25 (HP4.35)

compiler with generic instantiation as opposed to 2.0 (2.0) microseconds without generic

instantiation for an array of 10000 integers (with mode in out). This indicates that inter-package

calls with generic instantiation are extremely inefficient on the HP compilers as opposed to inter-

package calls without generic instantiation.

* The HP4.35 compiler has an improvement of more than 100% for these timings as opposed to the

HP3.25 compiler.

- 78-

TABLE 55. HP Results: Pragma Benchmarks

File Name Benchmark Description HP3.25 HP435

prOOOOl.a Pragma SUPPRESS used for OverflowCheck,

DivisionCheck, and RangeCheck 19.1 20.3

pr00001l.a Pragma SUPPRESS used for Access-Check 123 13.4

prOOOOL2.a Pragma SUPPRESS used for IndexCheck 32.9 29.8

and LengthCheck

pr00001.3.a Pragma SUPPRESS used for STORAGECHECK 3.4 3.9

prOO0014.a Pragma SUPPRESS used for ELABORATIONCHECK No response

prOO0015.a Pragma SUPPRESS used for INDEXCHECK 26.4 21.9

prO002.a Pragma CONTROLLED used for access type No effect No effect

pr003.a Pragma SHARED,shared integer updated No effect No effect

pr000031.a Pragma SHARED,shared integer updated No effect No effect

during rendezvous

" The results indicate that Pragma SUPPRESS improves the execution timings for both the HP

compilers.

" Pragms CONTROLLED and SHARED are not implemented for the HP Ada compilers.

-79-

TABLE 56. HP Results: Input/Output Benchmarks

Execution Time in Milliseconds

File Name Benchmark Description HF3.25 HIP435

io00001.a Create output file and copy characters 2169.0 2121.0

io00002.a Create output file, copy data using ENUMERATIONI1O 2245.0 2189.0

io00O3.a Create output file, copy data using INTEGER_10 2345.0 2235.0

io0004.a Create output file, copy data using FLOAT10 2509.0 2470.0

io0005.a Create output file, copy data using FIXED10 2457.0 2346.0

-80-

TABLE 57. HP Results: Tasking Implementation Benchmarks

File Name Benchmark Description HF3.25 HP4.35

rt_tOOl.a Is task space deallocated on return from procedure Yes Yes

on task termination

rt_tOO2.a Is task space deallocated upon task termination Yes Yes

when access type is declared in library unit

rt tOO3.a Determine order of elaboration when several tasks See See

are activated below below

rt t004.a Can a task continue execution after its activation but Yes Yes

prior to completion of activation of tasks declared

in the same declarative part

rt-t005.a If allocation of task raises STORAGEERROR Task Task

when is exception raised Activation Activation

rt t006.a What happens to tasks declared in a library Do not Do not

package when main task terminates terminate terminate

rt t007.a Print default attribute STORAGE_SIZE 16916 bytes 11796 bytes

and SIZE for tasks objects 16 bytes 16 bytes

rt t008.a Order of evaluation of tasks in See See

abort statement below below

rt t003.a There is no set order of elaboration when several tasks are activated for both the HP3.25 and

HP4.35 Ada compilers.

rt.tOO&a Tasks are aborted in the order that they are named in the abort statement for both the HP

compilers.

- 81 -

TABLE 58. HP Results: Rendezvous Implementation Benchmarks

File Name Benchmark Description

rt rOO.a Choosing among branches of selective wait statement

rt r002.a Evaluation of guard conditions in a selective wait

rtrOO3.a Method to select from delay alternatives of the same delay

in selective wait

rt r004.a When expressions of an open delay alternative or entry
family index in an open accept alternative are evaluated

rt_r005.a Priority of a task with no explicit priority specified

rt r006.a Priority of a rendezvous between two tasks which have

no explicit priorities specified

t rOOl.a. No set algorithm for both the HP compilers.

t r200aa: Evaluation occurs in the order that they are declared in the select statement for both HP

compilers.

Pt r003.a: No set algorithm for both the HP compilers.

it_r004.a: The HP compilers always evaluates the expressions of an open delay statement before a

selection is made.

rt_rOOS.a Lowest priority for both the HP compilers.

rt_,006.a Lowest priority for both the HP compilers.

- 82-

TABLE 59. HP Results: Scheduling and Delay Statement Dependencies

File Name Benchmark Description HF325 HP4.35

dtOO001.a Determine minimum delay time 0.02 sec 0.02 sec

dt002.a Determine if user tasks are pre-emptive Yes Yes

dt0003.a Determine method to share processor within See See

each priority level below below

dt00O4.a Does delay 0.0 cause scheduling No No

dt00O3.a: The scheduling facility in the Ada runtime is priority-based. If a task is available (queued) to

run at a certain priority, the scheduler will choose it over tasks of lower priority when the scheduler is

entered. The scheduler is entered whenever a task is to be descheduled. A task can be descheduled

for any of the following reasons:

* completion of its time slice

" waiting for a rendezvous

" executing a delay statement

" waiting for the completion of I/O

" a higher priority task becomes schedulable because a delay statement expires.

In addition, at a variety of points at which the excution of a task requires entry into the Ada runtime,

the Ada runtime itself checks to see that the currently-scheduled task is still the task of highest

available priority, if not, the task will be descheduled. The points at which the scheduler checks for a

higher priority task include rendezvous, delay, I/O, heap operations, and (because they engender heap

operations) some string operations.

0

-83-

TABLE 60. HP Results: Memory Management Dependencies

File Name Benchmark Description HP3.25 HP4.35

m00002.a Is UncheckedDeallocation implemented Yes Yes

m00003.a Garbage Collection performed on fly No No

m00003 l.a

m00004.a Garbage Collection performed on scope exit No No

S-84-

TABLE 61. HP Results: Real-time Paradigms

File Name Benchmark Description HP3.25 HP4.35

paOO001.a Simple producer consumer transaction 1879.0 1796.0
with main calling consumer task

paOO0011.a Simple producer consumer transaction with 2310.0 2109.0

consumer using selective wait

paOOOO_2.a Simple producer consumer transaction with 1867.0 1782.0

producer task calling consumer task

paOO001.3.a producer task communicates with consumer task 5170.0 4867.0

through a bounded buffer

paOO001_4.a producer task communicates with consumer task 6423.0 6123.0

indirectly through a bounded buffer with a

transporter between buffer and consumer

paOOOO5.a producer task communicates with consumer task 8534.0 8167.0

indirectly through a bounded buffer with a

transporter between buffer and producer as well as

transporter between buffer and consumer

paOO001_6.a Producer task communicates with a 3345.0 3196.0

consumer via relay

pa0002.a Monitor using semaphores 2786.0 2421.0

paOO002_l.a Monitor using rendezvous 9198.0 9002.0

paO,.002_2.a Monitor using rendezvous 1956.0 1867.0

pa0004.a Abort a task and create a new one 27879.0 21834.0

